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Abstract

To better understand the development of the fetal Auto-
nomic Nervous System (ANS), estimation of Fetal Behav-
ioral States (FBSes) is an essential parameter. The ob-
jective of this work is to use 1D CNN to classify FBSes
into two states: quiet and active. Non-invasive electrocar-
diogram signals were collected from 105 healthy fetuses
whose Gestational Age (GA) ranged from 20–40 weeks for
a time between 3-10 min. Based on the fetal ECG sig-
nal, this study develops a 1D Convolutional Neural Net-
work (CNN) for automatically obtaining features and iden-
tifying the behavioral state of the fetus. Our study em-
ploys a 1D CNN technique without extracting or selecting
features from the fetal ECG signal. These networks can
self-learn the distinguishing features of ECG signals. The
proposed method for classifying fetal quiet states/active
states provided an overall sensitivity, specificity, precision,
and F1 score of 72.7/82.6%, 82.6/72.7%, 89.4/60%, and
80.2/69.5%, respectively. According to the results of this
study, a deep learning approach combined with fetal ECG
signals can be a useful pre-screening tool for fetal neu-
rological assessment throughout gestation which has the
advantage of reducing fetal mortality rate.

1. Introduction

Behavioral state was first described by Prechtl in 1974
for infants [1], and subsequently applied to fetuses [2].
Defining fetal states before 32 weeks of gestation is possi-
ble, but we can only differentiate between fetal quiet and
fetal active states in this scenario [3]. This FBS distribu-
tion is stable during the daytime and these states varies de-
pending on the position of the mother as well [4][5]. The
frequency of occurrence of these states differs as the gesta-
tion progresses [6]. Four FBSes have been identified start-
ing from 32 weeks of gestation, namely quiet sleep (1F),
active sleep (2F), quiet awake (3F) and active awake (4F).
For these states to be defined, the body/eye movement pat-
terns and heart rate patterns must remain stable for a mini-

mum of 3 min [7].

It is known that Heart Rate Variability (HRV), analyzed
using both time domain and spectral domain techniques,
is a mirror of the Autonomic Nervous System (ANS) in
adults, neonates, and fetuses [7]. In terms of fetal surveil-
lance, it may be beneficial to consider this feature of Fe-
tal Heart Rate Variability (FHRV). It is thus not surpris-
ing that impaired FHRV has been associated with condi-
tions, such as fetal acidosis during labor, hypoxic ischemic
encephalopathy and fetal growth restriction [8][9]. It is
the standard practice in high-risk pregnancies in clinics to
monitor the fetal status primarily through fetal Doppler ul-
trasound, which reflects the fetus’ cardiovascular capac-
ity. However, it does not necessarily reflect their neu-
rological status. There is a possibility that FHRV could
fill this gap in existing surveillance. Cardiotocography
(CTG) cannot accurately detect every single normal heart-
beat when determining beat-to-beat HRV. As a result, re-
cent developments in non-invasive fetal electrocardiogra-
phy (NI-FECG), in which electrodes are placed on the
mother’s abdomen to obtain the fetal ECG, have led to op-
timism regarding a clinically feasible monitoring method-
ology for FHRV. The Gestational Age (GA) and maternal
factors greatly influence FHRV, whereas fetal gender and
ethnicity have less impact.

One of the most widely used deep learning algorithms
in the field of machine learning is convolutional neural
networks (CNNs). One of their most notable characteris-
tics is that they learn task-specific features without having
any previous domain knowledge [10]. Object recognition,
image segmentation, and face recognition are some areas
where CNNs have shown to be highly effective. End-to-
end learning, i.e., integrating feature extraction and clas-
sification into a single algorithm, has been key to the suc-
cess of CNNs. CNNs are proving to be very effective for
computer vision applications based on two-dimensional
images, notably in medical imaging. However, this has
not been true for biomedical applications that classify
one-dimensional biosignals, such as electrocardiography
(ECG) and electroencephalography (EEG) [11]. Recently,
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Figure 1. Examples of fetal quiet state and fetal active
state obtained from fetal heart rate signal.

there has been an increasing interest in using 1DCNNs to
solve biosignal-related problems [12][11]. In this article,
we describe a 1D CNN architecture that we developed to
classify FBSes into quiet state and active state using NI-
fECG information.

2. Methods

2.1. Dataset Information

A total of 105 healthy fetuses with GA ranging from
20–40 weeks were examined using non-invasive electro-
cardiography (ECG) signals for 3–10 min in a supine po-
sition. The datasets were obtained from Kanagawa Chil-
dren’s Medical Center (17 subjects, 16.2%) and Tohoku
University Hospital (73 subjects, 69.5%) in Japan, in ad-
dition to Children’s National Hospital in the United States
(15 subjects, 14.3%). On the maternal abdomen, twelve
electrodes were placed, and signals were recorded. The
fetal ECG was separated from the composite abdominal
signal using maternal ECG cancellation and blind source
separation with a reference [13]. Fig. 1 illustrates an ex-
ample of a fetal quiet state and a fetal active state.

2.2. Structure of 1D CNN Technique

Fig. 2 illustrates the structure of 1DCNN where time-
series signals are used as inputs. Layer by layer, convolu-

tional layers, and pooling layers are used to extract features
and thus form the overall feature map of the input. After-
ward, the fully connected layer categorizes the results.

As a result of the convolution operation performed on
the local area of the input signals, one-dimensional feature
maps are generated, and different convolution kernels pro-
duce different output features from the input signal.

In this study, the deep neural network was constructed
using three convolutional layers. Accordingly, each layer
of the network has a kernel size of [1, 30], [1, 20], and [1,
11], respectively. Additionally, as the network is deepened,
the number of filters increases, with 8, 16, and 32, respec-
tively. In order to reduce the dimensionality and complex-
ity of the model, each convolutional layer was followed by
a max-pooling layer. Throughout the network, the max-
pooling kernel size remained same with kernel sizes of [1,
2]. The max-pooling layers were followed by batch nor-
malization (BN) layers to normalize all filters and rectified
linear unit (ReLU) layers to set all feature map values be-
low zero to zero. To prevent overfitting, dropout layers
are placed in the model. A final layer, known as softmax,
mapped input signals and output signals. As a result, the
number of units in this layer equals the number of classes.

2.3. Labeling of Fetal Heart Rate Pattern

Labeling of Fetal Heart Rate Pattern (FHRP) using the
criteria outlined in previous studies [14][15] was con-
ducted. All the 3 min window was labeled and used for
training purpose.

2.4. Training and Validation

In order to train the proposed model, the stochastic
gradient descent with momentum (SGDM) optimizer was
used with a mini-batch size of 60 and a maximum of 350
epochs. A learning rate of 0.01 was assigned along with
an L2 regularization of 0.0001. The proposed model was
validated using a k-fold (k=5) cross-validation procedure.

2.5. Performance Evaluation

A traditional evaluation metric, such as accuracy, sen-
sitivity, specificity, precision, and F1-score, was used to
evaluate the performance of the proposed deep learning
model.

3. Results

This initial study was conducted to analyze how effi-
ciently the 1D CNN technique could classify FBSes into
quiet state and active state. Fig. 3 illustrates the overall
performance of the proposed deep learning model. Us-
ing the dataset, the model correctly predicted 160 out of
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Figure 2. The framework of 1D CNN Technique.

Figure 3. Model performance using confusion matrix.

179 quiet states and 90 out of 150 active states. Moreover,
only 19 subjects in the quiet state were incorrectly classi-
fied as active state, whereas 60 subjects in the active state
were misclassified as quiet state. As quiet state prediction
was higher compared to active state, the confusion matri-
ces show percentages of proportion of 89.3% and 60% for
quiet state and active state datasets, respectively. The over-
all accuracy of the model is 76%.

According to the evaluation metrics calculated from
these confusion matrices (Fig. 4), the sensitivity measures
for the quiet and active state datasets are 72.7% and 82.6%,
respectively. Additionally, the model showed 82.6% speci-
ficity for the quiet state dataset and 72.7% specificity for
the active state dataset. The quiet state dataset had the
highest precision of 89.4%, while the active state dataset
had the lowest precision of 60%.

3.1. Performance related to state of art ap-
proaches:

Table 1 shows recent work on fetal behavioral state
classification done so far in order to illustrate the perfor-
mance of the proposed deep learning model compared to
the current state-of-the-art studies. Other studies used fe-
tal Magnetocardiography (MCG) signals [14][15]. A dif-
ference between the proposed study and the study reported
in [15][14] is that the proposed study used recorded ECGs
from NI-fECG, as well as a deep learning approach, result-

Figure 4. Evaluation metrics.

ing in slightly higher performance than [15]. Compared
with our study, the study reported in [14] showed excel-
lent classification accuracy. There is only one limitation
in [14]: the GA range, where they used GA from 36 - 40
weeks. During this late GA period, FBSes become highly
consistent and stable, which may have contributed to the
high performance.

4. Discussion

The study presented in this article demonstrated the im-
portance of using deep learning to categorize fetal behav-
ioral states. Furthermore, it elaborated on the significance
of fECG signals over fMCG signals in classifying fetal
behavioral states. The results of this study (accuracy of
76%) suggest that deep learning could be used as a pre-
screening tool for assessing the development of the ANS
in fetuses. Besides providing high levels of performance,
deep learning also reduces the need for experts, such as
doctors and nurses. Moreover, the sensitivity and speci-
ficity measures (72.7% and 82.6%, respectively) obtained
in this study demonstrate the efficiency of deep learning in
FBS classification. Although it is well known that fMCGs
have a higher resolution than fECGs, the study reported
in this article, however, indicates that FBS classification
performed by fMCG and fECG recordings is almost as ac-
curate with slightly better accuracy. The proposed deep
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Table 1. Comparison study with current state of art.
Study Year GA Range Technique used Technique used Overall Quite state Active state

for recording for classification Accuracy (%) Accuracy (%) Accuracy (%)
Lange[14] 2009 36≤GA<41 fMCG Quadratic discriminant analysis 91.7 90.9 90.8
Vairavan[15] 2016 30≤GA<38 fMCG Based on threshold values 70 86.5 53
Our study 2022 20≤GA<40 NI-fECG Deep learning (1D CNN) 76 89.3 60
GA- Gestational Age, fMCG- Fetal magnetocardiography, NI-fECG- Non-invasive fetal Electrocardiography

learning approach had a good overall performance and a
higher capability to classify fetal quiet state accurately.

5. Conclusions

The study presented in this article proposed a deep
learning technique used to categorize the Fetal Behavioral
States (FBSes), and resulted in an over all accuracy of
76%. Analysis of FBSes is one method of understand-
ing the maturation of the fetal autonomic nervous system
(ANS). This deep learning approach needs to be further
modified to improve the accuracy of fetal active state clas-
sification.
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